

STRUCTURAL HEALTH MONITORING

STRUCTURAL HEALTH MONITORING (SHM)

Pre-emptive Offshore Structural Evaluation and Integrity DecisiOn Network - POSEIDON™

- A system consisting of structural sensory arrays and data acquisition system
- Integrated via a software platform that incorporates research solutions i.e. expert decision system.
- Monitoring is autonomous from topside and onshore – thus facilitating instant decision-making.
 Defects monitored 10 times per second, 24-7
- Alarm system is integrated onboard with analytical verification.
- Built in accordance to offshore and industry standards (ISO, ASTM, API)
- Can be customised to suit client requirement

SHM – APPLICATIONS TO STRUCTURAL REPAIRS

- ✓ POSEIDON[™] can be used to determine structural defects such as cracks would propagate and/or affect the integrity of platform structure
- ✓ POSEIDON can measure the effects of the repair by monitoring the platform natural frequency pre and post repair programs.
- POSEIDON can monitor if the repairs solution implemented provide long term structural adequacy to the platform or further remedy action would be required.

IEV

STRUCTURAL HEALTH MONITORING (SHM)

IEV Group | UTP Malaysia

SHM : COMPARISONS

POSEIDON vs EXISTING TECHNOLOGIES

EXISTING TECHNOLOGIES	POSEIDON
 Utilises air/saturation diving for CVI , GVI 	 Diver only required for installation stage
 For existing defects, need to be monitored on constant intervals 	 Monitored autonomously from topside and onshore (facilitates instant decision- making)
 OSV and DSV support required during every inspection 	 Support only required for installation (maintenance free, calibration free)
 No knowledge of defect propagation between diving inspections 	 Defect monitored 10 times per second, 24/7
 No way of knowing if defect is structurally compromising (data needs to be analysed onshore by consultants) 	 Alarm system integrated onboard with analytical verification.

SHM : CASE STUDIES

Structure had undergone significant platform swaying due to a broken shim plate, endangering the riser structure

Case Study: Minimal structure monitoring Sarawak Operations

Minimal structure had undergone severe strucrural motion. Monitoring campaign had set out 2 objectives:

- a. Determination of in-situ structural performance (100-year wave condition)
- b. Determination of riser integrity / stifness due to a failed shim plate (averting catastrophic HSE incident

To monitor structural crack propagation at the legs - 63 meters underwater

Case Study: Cracked MOPU leg (subsea) Peninsular Malaysia Operations

Key higlights of campaign:

- a. Monitoring of cracked MOPU tubular leg in-lieu of costly underwating diving inspection
- b. Accepted by class audit society as an alternative method of autonomous inspection
- c. Cracked data was streamed real-time to client head offices

"COMBINING **DISRUPTIVE TECHNOLOGIES** AND PROVEN **ENGINEERING CAPABILITIES**"

INDIA IEV ENGINEERING(INDIA)

PVT LTD

ADD: 201, LAVLESHCOURT, F/1412, W.P. VARDEROAD, BANDRA (WEST), MUMBAI – 400 050INDIA

ADD: F-04 & 05, TRIVENI COMMERCIAL COMPLEX, SHEIKH SARAI PHASE-1, NEW DELHI – 110 017INDIA

T: +91 22 2763 6841 / 2763 6591 **F:** +91 22 2763 6504 **E:** INFO@IEV-GROUP.COM